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Abstract
In the present work, a generalized finite Hankel transform is derived which
is useful in solving equations in fractal dimension df and involving a
fractal diffusion coefficient D0r

−θ . The corresponding inversion formula is
established and some properties are given. Then, the transform is successfully
used to solve a class of time-fractional diffusion equations in fractional spatial
dimension with an absorbent term and Schrödinger equation in fractional-
dimensional space. Green’s functions and exact wave function of the above
problems are found.

PACS numbers: 02.30.Uu, 02.60.Lj, 05.45.Df

1. Introduction

An integral transform method has been widely applied to the solution of boundary value
problems of mathematical physics. The application of such transforms often reduces a partial
differential equation to an ordinary differential equation [1–6]. The Hankel integral transform
arises naturally in the discussion of problems posed in cylindrical coordinates and hence
involves Bessel functions as a result of separation of variables. The method of the finite Hankel
transform was first introduced by Sneddon [6]. Ali and Kalla [7] introduced a generalized
form of the infinite Hankel transform and applied it to the problem of a heavy pollutant
from a ground level aerial source within the framework of diffusion theory. Recently, Eldabe
et al [8] gave another definition of the finite Hankel transform and applied it to the problem of
unsteady flow through a concentric annulus. Many of these studies are concentrated on the d-
dimensional (d = 1, 2, 3) diffusion equation with an absorbent term. Although the embedding
space in our world is a three-dimensional (3D) Euclidean space, the motion of material objects
is not always in three dimensions. At present, the time-fractional diffusion equation and the
Schrödinger equation in fractional spatial dimension have not received much attention. It is
the purpose of this paper to introduce a fractional finite Hankel transform, in which the finite
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Hankel transform introduced by Sneddon [6] will emerge as a particular case, and to extend
its utility to a wider class of time-fractional partial differential equations and the Schrödinger
equation with fractional spatial dimension. This paper is organized as follows. In section 2,
we show how a generalized finite Hankel transform and corresponding inversion formula can
be obtained on fractal space which are referred to as the fractional finite Hankel transform. In
section 3, firstly, the transform is successfully applied to solving a class of the time-fractional
diffusion equation with an absorbent term which has a derivative of noninteger order. It can be
proved that this kind of diffusion equation is very successful in describing anomalous kinetics,
transport and chaos. We find Green’s functions and exact solutions of every kind of boundary
value problem. Secondly, the transform is applied to solving the Schrödinger equation in
fractional-dimensional space. In section 4 we present our conclusions.

2. The fractional finite Hankel transform

A great variety of reactions in nature, the economy and engineering are heterogeneous. The
geometrical structure of reaction surface takes on a complicated character [9] and has the
property of a fractal structure. In recent years, the phenomenon of anomalous diffusion in
fractal media has attracted more and more attention. Fractional anomalous diffusion equations
have played an important part in describing anomalous diffusion phenomena in nature
[10–14]. A large number of fractional diffusion equations taking place in the formulation
of the problems of physics and engineering are specializations of the following general form:

1

rdf −1

∂

∂r

[
rdf −1D0r

−θ

(
∂P (r, t)

∂r

)]
= 0D

ν
t P (r, t) + α(t)P (r, t), (1)

with 0 < ν � 1. Here D0r
−θ denotes the fractal diffusion coefficient, α(t) plays the role of an

absorbent (α(t) < 0) (or source (α(t) > 0)) rate related to a reaction–diffusion process and
0D

ν
t is the Caputo fractional derivative of order ν defined as

0D
ν
t f (t) = 1

�(n − ν)

∫ t

0

f (n)(τ )

(t − τ)ν+1−n
dτ (n − 1 < Re(ν) � n).

In this section we shall consider equation (1) together with the following homogeneous
boundary condition to introduce a fractional finite Hankel transform:(

k
∂P (r, t)

∂r
+ hP (r, t)

) ∣∣
r=R

= 0. (2)

The integral transform pair needed for the solution of the above problem can be developed
by considering the following eigenvalue problem:

1

rdf −1

d

dr

(
rη dψ

dr

)
+ λ2

mψ = 0, (3)(
dψ

dr
+ hψ

) ∣∣
r=R

= 0, |ψ(λm, 0)| < ∞, (4)

where λm(m = 1, 2, 3, . . .) are eigenvalues and η = df − 1 − θ � 0. The eigenfunctions
ψ(λm, r) (see equation (13)) of this eigenvalue problem are orthogonal with respect to the
weighting function rdf −1, that is,∫ R

0
rdf −1ψ(λm, r)ψ(λn, r) dr =

{
0, for m �= n

N(λm), for m = n,
(5)
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where the normalization integral N(λm) is defined as

N(λm) =
∫ R

0
rdf −1(ψ(λm, r))2 dr. (6)

We now consider the representation of a function P(r, t) defined in the finite region (0, R) in
terms of the eigenfunctions ψ(λm, r) in the form

P(r, t) =
∞∑

m=1

Cm(t)ψ(λm, r) in R, (7)

where the summation is taken over the discrete spectrum of eigenvalues λm. In order to
determine the unknown coefficients, multiplying rdf −1ψ(λn, r) on both sides of equation (7)
integrating from zero to R, and then using the orthogonality (5), we obtain

Cm(t) = 1

N(λm)

∫ R

0
rdf −1ψ(λm, r)P (r, t) dr. (8)

Substituting equation (8) into equation (7) yields

P(r, t) =
∞∑

m=1

ψ(λm, r)

N(λm)

∫ R

0
r ′df −1ψ(λm, r ′)P (r ′, t) dr ′. (9)

Based on the above-mentioned analysis we introduce a fractional finite Hankel transform as
follows.

Definition 1. If f (r) is continuously two-times differentiable on the interval [0, R],
then the fractional finite Hankel transform of order μ of a function f (r) is denoted by
�μ{f (r)} = f̃ μ(λm) and is defined by

�μ{f (r)} = f̃ μ(λm) =
∫ R

0
rdf −1f (r)ψμ(λm, r) dr. (10)

The inverse finite Hankel transform is then defined by

�−1
μ {f̃ μ(λm)} = f (r) =

∞∑
m=1

ψμ(λm, r)

N(λm)
f̃μ(λm), (11)

where λm are the positive roots of the equation

λmJ ′
μ(λmbRa) + hJμ(λmbRa) = 0, (12)

and Jμ is the Bessel function of the first kind of order μ. The eigenfunctions of this eigenvalue
problem ψ(λm, r) are denoted by

ψμ(λm, r) =
{

1 for λm = 0

r
1−η

2 Jμ(λmbra) for λm > 0
, (13)

and μ = 1 − df

θ+2 , a = 2+θ
2 , b = 2

2+θ
.

Lemma 1. If f (r) is continuous on the interval [0, R], then �μ{f (r)} = f̃ μ(λm) exists,
which converges absolutely and uniformly.

Proof. It is clear that

|f̃ μ(λm)| =
∣∣∣∣ ∫ R

0
rdf −1f (r)ψμ(λm, r) dr

∣∣∣∣ �
∫ R

0

∣∣r df +θ

2 f (r)Jμ(λmbra)
∣∣ dr

=
∫ R

0

∣∣r η

2 + 3θ
4 f (r)b−1/2λ−1/2

m (λmbra)
1
2 Jμ(λmbra)

∣∣ dr.

3
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Since f (r) is continuous on the interval [0, R], r
η

2 + 3θ
4 f (r) is continuous and bounded. When

μ � − 1
2 , the function (λmbra)

1
2 Jμ(λmbra) is bounded. We have

|f̃ μ(λm)| � M1Rλ−1/2
m = Mλ−1/2

m ,

where M1 and M are constant.
Hence, the integration

f̃ μ(λm) =
∫ R

0
rdf −1f (r)ψμ(λm, r) dr,

converges absolutely and uniformly. This proves the above lemma. �

Lemma 2. Let f (r) be continuously two-times differentiable on the interval [0, R] and
satisfy the boundary condition (4). Then the inverse formula (11) is uniformly convergent.

Proof. The boundary value problems (3) and (4) are the singular Sturm–Liouville
problem when η = df − 1 − θ > 0 and are the regular Sturm–Liouville problem when
η = df − 1 − θ = 0. The endpoint 0 is singular endpoint [15, 16]. Equation (3) is in the
limit-circle case at r = 0 if for some λ ∈ C all solutions of equation (3) satisfy∫ R

0
rdf −1|ψμ(λm, r)|2 dr < +∞ (14)

(see [15], p 277). So it suffices to consider equation (3) with λ = 0, which has two linearly
independent solutions: ψ1(r) = 1 and ψ2(r) = r−η+1 in the case of η �= 1, ψ1(r) = 1 and
ψ2(r) = ln r in the case of η = 1. It can be easily shown that ψ1, ψ2 satisfy equation (14) if
and only if 0 < df < 4 + 2θ . Hence, equation (3) is in the limit-circle case at r = 0 when
− 1

2 � μ < 1. Based on the above discussion, it can be concluded that r = 0 is limit-circle
non-oscillatory (LCNO) (quasi-regular) in the case of 1 +θ � df � 3 + 3θ/2 (see [15], p 278).

Now we introduce the inner product

〈f, g〉 =
∫ R

0
rdf −1f (r)g(r) dr. (15)

Equation (3) can be put in the usual eigenvalue problem form

Lψ(λm, r) = λ2
mψ(λm, r), (16)

by defining a Sturm–Liouville operator L = − 1
w(r)

(
d
dr

(
p d

dr

)
+q

)
, where p = rη, w(r) = rdf −1

and q = 0. Let f (r) and g(r) be two functions having continuous second derivatives on the
interval [0, R] and satisfy the boundary condition (4); then

〈Lf, g〉 = −
∫ R

0

d

dr

(
p

df

dr

)
g dr. (17)

With integration by parts, equation (17) is reduced to

〈Lf, g〉 = 〈f,Lg〉 − p(f ′g − fg′)
∣∣R
0 . (18)

It is clear that if p(f ′g − fg′)
∣∣R
0 = 0 then 〈Lf, g〉 = 〈f,Lg〉. By taking the boundary

condition (4) and p(0) = 0, we obtain p(f ′g − fg′)
∣∣R
0 = 0. Hence, the operator L is self-

adjoint under the boundary condition (4). If equations (3) and (4) are LCNO (quasi-regular)
and L is self-adjoint, by using the results in [17], pp 110–25, and [18], pp 19–25, then L has a
discrete spectrum and the eigenvalues are unbounded from above, that is λn → ∞, n → ∞.
The conclusions of a self-adjoint operator eigenvalue problem remain valid under these above
conditions (see [19], pp 284–6). So series (11) is uniformly convergent. Now we prove these
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conclusions. We use Green’s function to arrive at an integral expression for L−1, and define
the operator T on C([0, R]) by [16]

T u(r) = 〈G(r, ξ), u(ξ)〉 =
∫ R

0
ξdf −1G(r, ξ)u(ξ) dξ,

where G is Green’s function and satisfies the boundary value problems (3) and (4):

G(r, ξ) =
{ 1

1−η
(R1−η − r1−η) + 1

Rηh
, 0 � ξ � r � R,

1
1−η

(R1−η − ξ 1−η) + 1
Rηh

, 0 � r � ξ � R.
(19)

When η = 1, θ = 0, equations (3) and (4) are classical problems that have been discussed
in [21]. In the case of η �= 1, since T (Lu) = u, using equation (16), we have
T ψμ(λm) = μmψμ(λm), where μm = 1/λ2

m. Bessel’s inequality, applied to G as a function
of ξ , yields

n∑
m=1

1

N(λm)
μ2

m|ψμ(λm, r)|2 �
∫ R

0
ξdf −1|G(r, ξ)|2 dξ.

Putting (19) into the right-hand side of the above inequality and carrying out some
calculations, we obtain that the right-hand side integration exists and is bounded, that is∫ R

0 ξdf −1|G(r, ξ)|2 dξ � M. For any u ∈ C([0, R]),

‖Tnu‖ =
∥∥∥∥T u −

n−1∑
m=1

μm〈u,ψμ(λm)〉ψμ(λm)

N(λm)

∥∥∥∥ � |μn|‖u‖

= 1

λ2
n

‖u‖ → 0, n → ∞. (20)

If n > k, then ∣∣∣∣ n∑
m=k

μm〈u,ψμ(λm)〉ψμ(λm)

N(λm)

∣∣∣∣ =
∣∣∣∣T n∑

m=k

〈u,ψμ(λm)〉ψμ(λm)

N(λm)

∣∣∣∣
� ‖T ‖

∥∥∥∥ n∑
m=k

〈u,ψμ(λm)〉ψμ(λm)

N(λm)

∥∥∥∥ � M

(
n∑

m=k

∣∣∣∣〈u,
ψμ(λm)√
N(λm)

〉∣∣∣∣2
)1/2

.

Here we use |T u| � M||u||. The right-hand side of this inequality tends to zero as k, n → ∞;
hence the series

∑∞
m=1

μm〈u,ψμ(λm)〉ψμ(λm)

N(λm)
converges uniformly on [0, R]. T u and (20) now

imply

T u =
∞∑

m=1

μm〈u,ψμ(λm)〉ψμ(λm)

N(λm)
, x ∈ [0, R]. (21)

If f (r) satisfies the conditions of lemma 2, then u = Lf and f = T u. Since L is a self-adjoint
operator, we have

μm〈u,ψμ(λm)〉 = 〈u,μmψμ(λm)〉 = 〈Lf, T ψμ(λm)〉 = 〈f,LT ψμ(λm)〉 = 〈f,ψμ(λm)〉.
Using equation (21), we obtain that f (r) = ∑∞

m=1
〈f,ψμ(λm)〉ψμ(λm)

N(λm)
is uniformly convergent.

So series (11) is uniformly convergent. �

5
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Theorem 1. If f (r) is defined in 0 � r � R and satisfies the conditions of lemma 2, then
f (r) can be represented by the Fourier–Bessel series as

f (r) = 2r
1−η

2

∞∑
m=1

f̃ μ(λm)
Jμ(λmbra)

J 2
μ(λmbRa)

λ2
mb

b2R2a
(
h2 + λ2

m

) − μ2
, (22)

and the infinite series (14) is uniformly convergent.

Proof. By means of equation (6) and definition 1, the normalization integral N(λm) can be
written as

N(λm) =
∫ R

0
rdf −1(ψμ(λm, r))2 dr =

∫ R

0
r1+θ (Jμ(λmbra))2 dr. (23)

Introducing a variable y = bra , equation (23) becomes

N(λm) = 1

b

∫ bRa

0
y(Jμ(λmy))2 dy. (24)

Substituting ψ(λm, r) = r
1−η

2 Jμ(λmbra), y = bra into equation (3), after some algebraical
calculations, we get a new equation for Jμ(λmy),

y2J ′′
μ(λmy) +

y

λm

J ′
μ(λmy) +

(
y2 − μ2

λ2
m

)
Jμ(λmy) = 0. (25)

Multiplying 2J ′
μ(λmy) on both sides of the above equation, equation (25) can be rearranged

in the following form:

d

dy

[
y2J ′2

μ +

(
y2 − μ2

λ2
m

)
J 2

μ

]
− 2yJ 2

μ = 0. (26)

Integration of equation (26) gives∫ bRa

0
y(Jμ(λmy))2 dy = (bRa)2

2

[
J ′2

μ (λmbRa) +

(
1 − μ2

(λmbRa)2

)
J 2

μ(λmbRa)

]
. (27)

Using equation (12) we get

N(λm) = bR2a

2

[
h2

λ2
m

+

(
1 − μ2

(λmbRa)2

)]
J 2

μ(λmbRa). (28)

Substituting the value of N(λm) into equation (11) gives equation (22). It follows from
lemmas 1 and 2 that the infinite series (14) is uniformly convergent.

When the boundary condition is the second kind (or the first kind), that is, h = 0 (or
h → ∞ ), then the eigenvalues λm are the positive roots of the equation

J ′
μ(λmbRa) = 0, (29)

or

Jμ(λmbRa) = 0, (30)

respectively. The solutions of the problem are immediately obtained from equations (11) and
(16) as

f (r) = df

Rdf
f̃ 0(λ0) +

∞∑
m=1

2r
1−η

2 f̃ μ(λm)
Jμ(λmbra)

J 2
μ(λmbRa)

bλ2
m

λ2
mb2R2a − μ2

, (31)

or

f (r) = 2r
1−η

2

bR2a

∞∑
m=1

f̃ μ(λm)
Jμ(λmbra)

J 2
μ+1(λmbRa)

. (32)

6
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Here we use the recurrence relation J ′
μ(λmbRa) = Jμ−1(λmbRa) = −Jμ+1(λmbRa), due to

the standard relation zJ ′
μ + zJμ+1 = μJμ. The first term in equation (31) corresponds to the

eigenvalue λ0 = 0. For this particular case, λ0 = 0 is also an eigenvalue corresponding
to the eigenfunction ψ0 = constant �= 0. The normalization integral N(λ0) takes the form
N(λ0) = R

df

df
. �

Theorem 2. If f (r) is defined in 0 � r � R and �μ {f (r)} = f̃ μ(λm), then

�μ

{
1

rdf −1

∂

∂r

(
rη ∂f (r)

∂r

)}
= Rηψμ

[
∂f

∂r
+ hf

]
r=R

− λ2
mf̃ μ(λm). (33)

Proof. By use of definition 1 and lemma 1, we have

�μ

{
1

rdf −1

∂

∂r

(
rη ∂f (r)

∂r

)}
=

∫ R

0

∂

∂r

(
rdf −1−θ ∂f (r)

∂r

)
ψμ(λmr) dr.

Applying integration by parts to the right-hand side of the above formula, we obtain the result

rη ∂f

∂r
ψμ(λmr)

∣∣R
0 −

∫ R

0
rη ∂f

∂r

∂ψμ

∂r
dr = Rη

(
ψμ

∂f

∂r
− f

∂ψμ

∂r

) ∣∣
r=R

+
∫ R

0
f

∂

∂r

(
rη ∂ψμ

∂r

)
dr.

As ψμ is a solution of the eigenvalue problem equation (3) under the boundary condition
equation (4), we get after a little simplification

�μ

{
1

rdf −1

∂

∂r

(
rη ∂f (r)

∂r

)}
= Rηψμ

[
∂f

∂r
+ hf

]
r=R

− λ2
mf̃ μ(λm).

This proves the theorem. �

Definition 1, theorem 1 and theorem 2 converge to the classical finite Hankel transform
[1, 6] when df = 2, θ = 0. So the classical finite Hankel transform is a special case of this
transformation. Result equation (33) can be used to solve the initial boundary value problems
on fractal space.

3. Applications of the fractional finite Hankel transform

In order to illustrate the advantages and accuracy of the above transform for solving the
anomalous diffusion equation in fractional spatial dimension, we apply it to two different
examples in this section. One is the fractional anomalous diffusion equation with a fractional
oscillator term, and the other is the Schrödinger equation in fractal space.

3.1. Fractional anomalous diffusion equation with a fractional oscillator term

In this section, we present the use of the above integral-transform technique in the solution of
fractional-dimensional, time-fractional-dependent, homogeneous boundary value problems in
finite regions. Let us start to investigate equation (1) in the presence of a fractional oscillator
term. Thus, we focus our attention on the following equation:

1

rdf −1

∂

∂r

[
rdf −1−θ

(
∂P (r, t)

∂r

)]
= 0D

ν
t P (r, t) +

α

�(β)

∫ t

0
(t − t ′)β−1P(r, t ′) dt ′, (34)

with 0 < ν � 1, 0 < β � 1. The initial and boundary conditions are as follows:

P(r, 0) = P0(r), 0 < r < R, (35)

7
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∂P (r, t)

∂r
+ hP (r, t) = 0, r = R, (36)

whereP(0, t) is bounded. Applying the Laplace transform of the Caputo fractional derivative
[20] to equation (34) and conditions (35), (36), we get

(sν + αs−β)P (r, s) − sν−1P(r, 0) = 1

rdf −1

∂

∂r

(
rdf −1−θ ∂P (r, s)

∂r

)
, (37)

(
∂P (r, s)

∂r
+ hP (r, s)

) ∣∣
r=R

= 0, t � 0, (38)

where P(r, s) is the image function of P(r, t) and s is the Laplace transform parameter.
Application of the above fractional finite Hankel integral transform defined by equation (10)
and theorem 2 to equation (37) gives

(sν + αs−β)P̃ (λm, s) − sν−1P̃ (λm, 0) = Rηϕμ

[
∂P (λm, s)

∂r
+ hP (λm, s)

]
r=R

− λ2
mP̃ (λm, s).

From the boundary condition, we get

P̃ (λm, s) = sν−1

sν + αs−β + λ2
m

P̃ (λm, 0), (39)

where P̃ (λm, 0) is the fractional finite Hankel transform of the initial condition. In order to
get P̃ (λm, t) and to avoid lengthy calculations of residues and contour integrals, we apply the
discrete inverse Laplace transform method to equation (39):

P̃ (λm, t) = L−1

[
sν−1P̃ (λm, 0)

sν + αs−β + λ2
m

]
= L−1

[ ∞∑
k=0

(−1)k
αksν−1−kβP̃ (λm, 0)(

sν + λ2
m

)k+1

]

=
∞∑

k=0

(−1)kαk

k!
t kν+kβE

(k)
ν,1+kβ

[ − λ2
mtν

]
P̃ (λm, 0). (40)

Here we used an important formula of the Laplace transform of the generalized Mittag–Leffler
function:

L−1

{
n!sλ−μ

(sλ ∓ c)n+1
; t

}
= tnλ+μ−1E

(n)
λ,μ(±ctλ),

in which Eλ,μ(z) is the generalized Mittag–Leffler function defined by

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
(α > 0, β > 0),

and

E
(k)
α,β(z) = dk

dzk
Eα,β(z) =

∞∑
n=0

(n + k)!zn

n!�(αn + βk + β)
.

Making use of the inverse fractional finite Hankel transform equations (22) to (40), we obtain
the expression of Green’s function in the form of

P(r, t) =
∫ R

0
r ′df −1G(r, t |r ′, τ )|τ=0P0(r

′) dr ′, (41)

8
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and

G(r, t |r ′, τ )|τ=0 = 2(rr ′)
1−η

2

∞∑
m=1

Jμ(λmbra)

J 2
μ(λmbRa)

λ2
mb

b2R2a
(
h2 + λ2

m

) − μ2

×
∞∑

k=0

(−1)kαk

k!
t kν+kβE

(k)
ν,1+kβ

[−λ2
mtν

]
Jμ(λmbr ′a), (42)

where G(r, t |r ′, τ ) is Green’s function. r ′df −1 is the weighting function. Finally, replacing t
by t − τ , Green’s function is given by

G(r, t |r ′, τ ) = 2(rr ′)
1−η

2

∞∑
m=1

Jμ(λmbra)

J 2
μ(λmbRa)

λ2
mb

b2R2a
(
h2 + λ2

m

) − μ2

×
∞∑

k=0

(−1)kαk

k!
(t − τ)kν+kβE

(k)
ν,1+kβ

[−λ2
m(t − τ)ν

]
Jμ(λmbr ′a). (43)

When the boundary condition is the second kind (or the first kind), that is h = 0 (or
h → ∞) and the eigenvalues λm are the positive roots of the equation J ′

μ(λmbRa) = 0 (or
Jμ(λmbRa) = 0), in the same way as deriving equation (42), we obtain

G(r, t |r ′, τ ) =
∞∑

m=1

2(rr ′)
1−η

2
Jμ(λmbra)

J 2
μ(λmbRa)

bλ2
m

λ2
mb2R2a − μ2

×
∞∑

k=0

(−1)kαk

k!
(t − τ)kν+kβE

(k)
ν,1+kβ

[−λ2
m(t − τ)ν

]
Jμ(λmbr ′a), (44)

or

G(r, t |r ′, τ )|τ=0 = 2(rr ′)
1−η

2

bR2a

∞∑
m=1

Jμ(λmbra)

J 2
μ+1(λmbRa)

×
∞∑

k=0

(−1)kαk

k!
(t − τ)kν+kβE

(k)
ν,1+kβ

[−λ2
m(t − τ)ν

]
Jμ(λmbr ′a). (45)

In view of the fact that [20] E1,1(z) = ez, under the conditions of ν = 1, df = 2, θ = 0 and
α = 0, equation (45) recovers the result of Green’s function of the usual diffusion equation
found in [21, 22] which is given by

G(r, t |r ′, τ )|τ=0 = 2

R2

∞∑
m=1

J0(λmr)

J 2
1 (λmR)

e−λ2
mtJ0(λmr ′). (46)

Therefore, Green’s functions of every kind of boundary value problems of normal diffusion
can be regarded as particular cases of this paper. By using the expressions of equations (41)
and (42), we may find the exact solution when the initial condition satisfies P(r, 0) = δ(r −r0)

as follows:

P(r, t) = 2(r)
1−η

2

∞∑
m=1

Jμ(λmbra)

J 2
μ(λmbRa)

λ2
mb

b2R2a
(
h2 + λ2

m

) − μ2

×
∞∑

k=0

(−αtμ+β)k

k!
E

(k)
ν,1+kβ

[−λ2
mtν

] ∫ R

0
r ′ 1−η

2 r ′df −1Jμ(λmbr ′a)δ(r ′ − r0) dr ′

=
∞∑

m=1

2Jμ(λmbra)

J 2
μ(λmbRa)

λ2
mbr

1−η

2 r
df +θ

2
0 Jμ(λmbra

0 )

b2R2a
(
h2 + λ2

m

) − μ2

∞∑
k=0

(−αtμ+β)k

k!
E

(k)
ν,1+kβ

[−λ2
mtν

]
,

(47)

where δ denotes the Dirac-delta function.
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3.2. The Schrödinger equation in fractal space

Zeilinger and Svozil [23] noted that the current discrepancy between the theoretical and
experimental values of the anomalous magnetic moment of the electron could be resolved if
the dimensionality of the space α is α = 3 − (5.3 ± 2.5) × 10−7. In a fractional-dimensional
model, one can study the anisotropic excitation dynamics by solving the relevant Schrödinger
equation in a noninteger-dimensional space. Eid et al [24] investigated the Schrödinger
equation in a given α-dimensional fractional space with a Coulomb potential depending on a
parameter. In this section the main aim is to apply the above integral-transform technique to
solving the Schrödinger equation in a given df-dimensional fractional space with a spherical
potential well, which takes the form of[ −h̄2

2υrdf −1

∂

∂r

(
rdf −1 ∂

∂r

)
+ V (r)

]
χ(r, θ, ϕ) = Eχ(r, θ, ϕ). (48)

The common eigenfunctions are

χ(r, θ, ϕ) = P(r)Ylm(θ, ϕ), (49)

where V (r) is the potential function, df is the dimension of a solid (1 � df � 3) and Ylm(θ, ϕ)

denote the harmonic spherical functions. We arrive at the radial equation in the form of

1

rdf −1

∂

∂r

(
rdf −1 ∂P (r)

∂r

)
+

2υ

h̄2

{
E −

[
V (r) +

h̄2

2υ

l(l + 1)

r2

]}
P(r) = 0, (50)

where l is an angular-momentum quantum number. When the potential function is a spherical
potential well V (r) = −γ δ

(
r − R

2

)
(γ > 0, 0 � r � R) and bounded states are base states

(E < 0, l = 0), the radial equation reads

1

rdf −1

∂

∂r

(
rdf −1 ∂P (r)

∂r

)
+

2υ

h̄2

{
E + γ δ

(
r − R

2

)}
P(r) = 0. (51)

The boundary conditions of wave function satisfy P(0) = P(R) = 0. With the help
of the fractional finite Hankel integral transform defined by equation (10) and theorem 2,
equation (51) becomes

Rη

(
ψμ

∂P

∂r
− P

∂ψμ

∂r

) ∣∣
r=R

− λ2
mP̃ +

2υ

h̄2 EP̃ +
2υγ

h̄2

(
R

2

) df

2

P

(
R

2

)
Jμ

(
λmR

2

)
= 0,

(52)

where we used the formula of the Dirac-delta function:∫ R

0
f (x)δ(x − x0) dx = f (x0), (53)

and θ = 0 (or η = df − 1) is used. Taking the boundary condition and Jμ(λmR) = 0, we get

P̃ =
2υγ

h̄2

(
R
2

) df

2 P
(

R
2

)
Jμ

(
λmR

2

)
λ2

m − 2υ

h̄2 E
. (54)

Substituting equation (54) into equation (32), the wavefunction in a given df-dimensional
fractional space with a spherical potential well is obtained:

P(r) = 2r1− df

2

R2

∞∑
m=1

Jμ(λmr)

J 2
μ+1(λmR)

2υγ

h̄2

(
R
2

) df

2 P
(

R
2

)
Jμ

(
λmR

2

)
λ2

m − 2υ

h̄2 E
. (55)
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4. Conclusions

In summary, in this paper we introduce a fractional finite Hankel integral transform. Inversion
formula is established and some properties are given. The transform is successfully applied to
solving a class of the time-fractional diffusion equation with a fractional oscillator term. We
find Green’s functions and exact solutions of every kind of boundary value problem. At the
same time, we use the transform to solve the Schrödinger equation in a given df-dimensional
fractional space with a spherical potential well.
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